Меню Рубрики

Нервная и гуморальная регуляция в теле человека. Нервная и гуморальная регуляция функций организма человека

План:

1. Гуморальная регуляция

2. Гипоталамо-гипофизарная система как основной механизм нервно-гуморальной регуляции секреции гормонов.

3. Гормоны гипофиза

4. Гормоны щитовидной железы

5. Гормоны паращитовидных желез

6. Гормоны поджелудочной железы

7. Роль гормонов в адаптации организма при действии стрессовых факторов

Гуморальная регуляция - это разновидность биологической регуляции при которой информация передается с помощью биологически активных веществ, которые разносятся по организму кровью, лимфой, межклеточной жидкостью.

Гуморальная регуляция отличается от нервной:

носитель информации - химическое вещество (при нервной - нервный импульс, ПД);

передача информации осуществляется током крови, лимфы, путем диффузии (при нервной - нервными волокнами);

гуморальный сигнал распространяется медленнее (с током крови в капиллярах - 0,05 мм/с) чем нервный (до 120-130 м/с);

гуморальный сигнал не имеет такого точного «адресата» (нервный - очень конкретный и точный), воздействия на те органы, которые имеют к гормону рецепторы.

Факторы гуморальной регуляции:


«классические» гормоны

Гормоны АПУД системы

Классические, собственно гормоны - это вещества синтезируемые железами внутренней секреции. Это гормоны гипофиза, гипоталамуса, эпифиза, надпочечников; поджелудочной, щитовидной, паращитовидной, вилочковой, половых желез, плаценты (Рис. I).

Кроме эндокринных желез, в различных орынач и тканях есть специализированные клетки, которые сини шруют вещества, действующие на клетки-мишени с помощью диффузии, т. е. поступая в сровь, местно. Это гормоны паракринного действия.

К ним принадлежат нейроны гипоталамуса, которые вырабатывают некоторые гормоны и нейропептиды, а также клетки АРUD-системы, или системы захвата предшественников аминов и их декарбоксилирования. Примером могут служить: либерины, статины, нейропептиды гипоталамуса; интерстинальные гормоны, компоненты ренин-ангиотензиновой системы.

2) Тканевые гормоны секретируются неспециализированными клетками разного вида: простагландины, энкефалины, компоненты калликреин- ининовой системы, гистамин, серотонин.

3) Метаболические факторы - это неспецифические продукты, которые образуются во всех клетках организма: молочная, пировиноградная ислоты, СО 2 , аденозин и др, а также продукты распада при напряженном метаболизме: повышенное содержание К + , Са 2+ , Na + и т.д.

Функциональное значение гормонов:

1) обеспечение роста, физического, полового, интеллектуального развития;

2) участие в адаптации организма в различных изменяющихся условиях внешней и внутренней среды;

3) поддержание гомеостаза..

Рис. 1 Железы внутренней секреции и их гормоны

Свойства гормонов:

1) специфичность действия;

2) дистантный характер действия;

3) высокая биологическая активность.

1. Специфичность действия обеспечивается тем, что гормоны взаимодействуют со специфическими рецепторами, находящимися в определенных органах-мишенях. В результате каждый гормон действует лишь на конкретные физиологические системы или органы.

2. Дистантность заключается в том, что органы-мишени, на которые действуют гормоны, как правило, расположены далеко от места их образования в эндокринных железах. В отличие от «классических» гормонов, тканевые действуют паракринно, т е. местно, недалеко от места их образования.

Гормоны действуют в очень небольших количествах, в чем и проявляется их высокая биологическая активность . Так, суточная потребность для взрослого составляет: тиреоидных гормонов - 0,3 мг, инсулина - 1,5мг, андрогенов - 5мг, естрогенов - 0,25мг и т.д.

Механизм действия гормонов зависит от их структуры


Гормоны белковой структуры Гормоны стероидной структуры

Рис. 2 Механизм гормонального контроля

Гормоны белковой структуры (Рис.2) взаимодействуют с рецепторами плазматической мембраны клетки, которые являются гликопротеидами, причем специфичность рецептора обусловлена углеводным компонентом. Результатом взаимодействия является активация протеинфосфокиназ, которые обеспечивают

фосфорилирование белков-регуляторов, перенос фосфатных групп от АТФ к гидроксильным группам серина, треонина, тирозина, белка. Конечный эффект действия этих гормонов может быть - сокращение, усиление ферментных процессов, например, гликогенолиза, повышение синтеза белка, повышение секреции и т.д.

Сигнал от рецептора, с которым провзаимодействовал белковый гормон, к протеинкиназе передается с участием специфического посредника или вторичного мессенджера. Такими мессенджерами могут быть (Рис.З):

1) цАМФ;

2) ионы Са 2+ ;

3) диацилглицерин и инозитолтрифосфат;

4) другие факторы.

Рис.З. Механизм мембранной рецепции проведения гормонального сигнала в клетке при участии вторичных посредников.



Гормоны стероидной структуры (Рис.2) легко проникают внутрь клетки через плазматическую мембрану в силу своей липофильности и взаимодействуют в цитозоле со специфическими рецепторами, образуя комплекс «гормон-рецептор», который движется в ядро. В ядре комплекс распадается и гормоны взаимодействуют с ядерным хроматином. В результате этого происходит взаимодействие с ДНК, а затем - индукция матричной РНК. Вследствие активации транскрипции и трансляции спустя 2-3 часа, после воздействия стероида наблюдается усиленный синтез индуцированных белков. В одной клетке стероид влияет на синтез не более 5-7 белков. Известно также, что в одной и той же клетке стероидный гормон может вызывать индукцию синтеза одного белка и репрессию синтеза другого белка (Рис. 4).


Действие тиреоидных гормонов осуществляется через, рецепторы цитоплазмы и ядра, в результате чего индуцируется синтез 10-12 белков.

Рефляция секреции гормонов осуществляется такими механизмами:

1) прямое влияние концентраций субстратов крови на клетки железы;

2) нервная регуляция;

3) гуморальная регуляция;

4) нейрогуморальная регуляция (гипоталамо-гипофизарная система).

В регуляции деятельности эндокринной системы важную роль играет принцип саморегуляции, который осуществляется по типу обратных связей. Различают положительную (например, повышение сахара в крови приводит к повышению секреции инсулина) и отрицательную обратную связь (при повышении в крови уровня тиреоидных гормонов уменьшается продукция тиреотропного гормона и тиреолиберина, которые обеспечивают выброс тиреоидных гормонов).

Итак, прямое влияние концентраций субстратов крови на клетки железы идет по принципу обратных связей. Если в крови изменяется уровень вещества, который контролируется конкретным гормоном, то «слеза отвечает повышением или снижением секреции данного гормона.

Нервная регуляция осуществляется благодаря прямому влиянию симпатических и парасимпатических нервов на синтез и секрецию гормонов нейрогипофиз, мозговой слой надпочечников), а также опосредованно, «меняя интенсивность кровоснабжения железы. Эмоциональные, юихические воздействия через структуры лимбической системы, через ипоталамус - способны существенно влиять на продукцию гормонов.

Гормональная регуляция осуществляется также по принципу обратной связи: если в крови уровень гормона повышается, то в агвет на это снижается выброс тех гормонов, которые контролируют содержание данного гормона, что и приводит к уменьшению его концентрации в кроки.

Например, при повышении уровня кортизона в крови, снижается выброс АКТГ (гормон стимулирующий секрецию гидрокортизона) и как следствие

Снижение его уровня в крови. Другим примером гормональной регуляции может быть такой: мелатонин (гормон эпифиза) модулирует функцию надпочечников, щитовидной железы, половых желез т е. определенный гормон может влиять на содержание в крови других гормональных факторов.

Гипоталамо-гипофизарная система как основной механизм нервно-гуморальной регуляции секреции гормонов.

Функция щитовидной, половых желез, коры надпочечников регулируется гормонами передней доли гипофиза - аденогипофизом. Здесь синтезируются тропные гормоны : адренокортикотропный (АКТГ), тиреотропный (ТТГ), фолликулостимулирующий (ФС) и лютеинизирующий (ЛГ) (Рис. 5).

С некоторой условностью к тройным гормонам относится и соматотропный гормон (гормон роста), который оказывает свое влияние на рост не только прямо, но и опосредованно через гормоны - соматомедины, образующиеся в печени. Все эти тропные гормоны так названы в связи с тем, что они обеспечивают секрецию и синтез соответствующих гормонов других эндокринных желез: АКТГ -

глюкокортикоидов и минералокортикоидов: ТТГ - тиреоидных гормонов; гонадотропные - половые гормоны. Кроме того, в аденогипофизе образуется интермедии (меланоцитостимулирутощий гормон, МЦГ) и пролактин, которые обладают эффектом на периферические органы.

Рис. 5. Регуляция эндокринных желез ЦНС. ТЛ, СЛ, ПЛ, ГЛ и КЛ - оответственно, тиреолиберин, соматолиберин, пролактолиберин, гонадолиберин и кортиколиберин. СС и ПС - соматостатин и пролактостатин. ТТГ - тиреотропный гормон, СТГ - соматотропный гормон (гормон роста), Пр - пролактин, ФСГ - фолликулостимулирующий гормон, ЛГ - лютеинизирующий гормон, АКТГ - адренокортикотропный гормон



Тироксин Трийодтиронин Андрогенны Глюкортикоиды

Эстрогены

В свою очередь, высвобождение всех 7 указанных гормонов аденогипофиза зависит от гормональной активности нейронов гипофизотропной зоны гипоталамуса - в основном паравентрикулярным ядром (ПВЯ). Здесь образуются гормоны, оказывающие стимулирующее или тормозящее влияние на секрецию гормонов аденогипофиза. Стимуляторы называются рилизинг-гормонами (либеринами), ингибиторы - статинами. Выделены тиреолиберин, гонадолиберин. соматостатин, соматолиберин, пролактостатин, пролактолиберин, меланостатин, меланолиберин, кортиколиберин.

Рилизинг-гормоны освобождаются из отростков нервных клеток паравентрикулярного ядра, поступают в портальную венозную систему гипоталамо-гипофиза и с кровью доставляются к аденогипофизу.

Регуляция гормональной активности большинства желез внутренней секреции осуществляется по принципу отрицательной обратной связи: сам гормон, его количество в крови регулирует свое образование. Указанное воздействие опосредуется через образование соответствующих рилизинг- гормонов(Рис. 6,7)

В гипоталамусе (супраоптическое ядро), кроме рилизинг-гормонов, синтезируются вазопрессин (антидиуретический гормон, АДГ) и окситоцин. Которые в виде гранул транспортируются по нервным отросткам в нейрогипофиз. Выделение нейроэндокринными клетками гормонов в кровоток обусловлено рефлекторной нервной стимуляцией.

Рис. 7 Прямые и обратные связи в нейроэндокринно системе.

1 - медленно развивающееся и продолжительное ингибирование секреции гормонов и нейромедиаторов, а также изменение поведения и формирование памяти;

2 - быстро развивающееся, но продолжительное ингибирование;

3 - кратковременное ингибирование

Гормоны гипофиза

В задней доле гипофиза - нейрогипофизе - находятся окситоцин и вазопрессин (АДГ). АДГ влияет на клетки трех типов:

1) клетки почечных канальцев;

2) гладкомышечные клетки кровеносных сосудов;

3) клетки печени.

В почках он способствует реабсорбции воды, а значит сохранению ее в организме, снижению диуреза (отсюда название антидиуретический), в кровеносных сосудах вызывает сокращение гладких мышц, суживая их радиус, и как следствие - повышает артериальное давление (отсюда название «вазопрессин»), в печени - стимулирует глюконеогенез и гликогенолиз. Кроме этого, вазопрессин обладает антиноцицептивным эффектом. АДГ предназначен для регуляции осмотического давления крови. Его секреция увеличивается под влиянием таких факторов: повышение осмолярности крови, гипокалиемии, гипокальциемии, повышении уменьшении ОЦК, снижении артериального давления, повышении температуры тела, активации симпатической системы.

При недостаточности выделения АДГ развивается несахарный диабет: объем выделенной мочи за сутки может достигать 20л.

Окситоцин у женщин играет роль регулятора маточной активности и участвует в процессах лактации как активатор миоэпителиальных клеток. Повышение продукции окситоцина происходит во время раскрытия шейки матки в конце беременности, обеспечивая ее сокращение в родах, а также во время кормления ребенка, обеспечивая секрецию молока.

В передней доле гипофиза, или аденогипофизе, вырабатываются тиреотропный гормон (ТТГ), соматотропный гормон (СТГ) или гормон роста, гонадотропные гормоны, адренокортикотропный гормон (АКТГ), пролактин, а в средней доле - меланоцитостимулирующий гормон (МСГ) или интермедии.

Гормон роста стимулирует синтез белка в костях, хрящах, мышцах и печени. В неполовозрелом организме обеспечивает рост в длину за счет повышения пролиферативной и синтетической активности хрящевых клеток особенно в зоне роста длинных трубчатых костей, одновременно стимулируя у них рост сердца, легких, печени, почек и др органов. У взрослых он контролирует рост органов и тканей. СТГ снижает эффекты инсулина. Выброс его в кровь увеличивается во время глубокого сна, после мышечных нагрузок, при гипогликемии.

Ростовой эффект гормона роста опосредуется воздействием гормона на печень, где образуются соматомедины (А,В,С) или ростовые факторы, обуславливающие активацию синтеза белка в клетках. Особенно велико значение СТГ в период роста (препубертатный, пубертатный периоды).

В этот период агонистами ГР являются половые гормоны, увеличение секреции которых способствует резкому ускорению роста костей. Однако, длительное образование больших количеств половых гормонов приводит к противоположному эффекту - к прекращению роста. Недостаточное количество ГР приводит к карликовости (нанизм), а чрезмерное - к гигантизму. Рост некоторых костей взрослого человека может возобновиться в случае чрезмерной секреции СТГ. Тогда возобновляется пролиферация клеток ростковых зон. Что приводит к разрастанию

Кроме того, глюкокортикоиды угнетают все компоненты воспалительной реакции - уменьшают проницаемость капилляров, тормозят экссудацию, снижают интенсивность фагоцитоза.

Глюкокортикоиды резко снижают продукцию лимфоцитов, уменьшают активность Т-киллеров, интенсивность иммунологического надзора, гиперчувствительность и сенсибилизацию организма. Все это позволяет рассматривать глюкокортикоиды как активные иммунодепрессанты. Это свойство используется в клинике для купирования аутоиммунных процессов, для снижения иммунной защиты организма хозяина.

Глюкокортикоиды повышают чувствительность к катехоламинам, повышают секрецию соляной кислоты и пепсина. Избыток этих гормонов вызывает деминерализацию костей, остеопороз, потерю Са 2+ с мочой, снижают всасывание Са 2+ . Глюкокортикоиды влияют на функцию ВНД - повышают активность обработки информации, улучшают восприятия внешних сигналов.

Минералокортикоиды (альдосгерон, дезоксикортикостерон) участвуют в регуляции минерального обмена. Механизм действия альдостерона связан с активацией синтеза белка, участвующего в реабсорбции Na + - Na + , К ч -АТФазы. Повышая реабсорбцию и снижая ее для К + в дистальных канальцах почки, слюнных и половых железах, альдостерон способствует задержке №" и СГ в организме и выведению К + и Н из организма. Таким образом, альдостерон является натрийсберегающим, а также калийуретическим гормоном. За счет задержки Иа\ а вслед за ним и воды, он способствует повышению ОЦК и, как следствие, повышению артериального давления. В отличие от глкжокортикоидов, минералокортикоиды способствуют развитию воспаления, т.к. повышают проницаемость капилляров.

Половые гормоны надпочечников выполняют функцию развития половых органов и появление вторичных половых признаков в тот период, когда половые железы еще не развиты, т е. в детском возрастем также в пожилом возрасте.

Гормоны мозгового слоя надпочечников - адреналин (80%) и норадреналин (20%) - вызывают эффекты во многом идентичные активации нервной системы. Их действие реализуется за счет взаимодействия с а- и (3- адренорецепторами. Следовательно, им присуща активация деятельности сердца, сужение сосудов кожи, расширение бронхов и т.д. Адреналин влияет на углеводный и жировой обмен, усиливая гликогенолиз и липолиз.

Катехоламины участвуют в активации термогенеза, в регуляции секреции многих гормонов - усиливают выброс глюкагона, ренина, гастрина, паратгормона, кальцитонина, тиреоидных гормонов; снижают выброс инсулина. Под влиянием этих гормонов повышается работоспособность скелетных мышц, возбудимость рецепторов.

При гиперфункции коры надпочечников у больных заметно изменяются вторичные половые признаки (например, у женщин могут появляться мужские половые признаки - борода, усы, тембр голоса). Наблюдаются ожирение (особенно в.области шей, лица, туловища), гипергликемия, задержка воды и натрия в организме и др.

Гипофункция коры надпочечников вызывает болезнь Аддисона – бронзовый оттенок кожи (особенно лица, шеи, рук), потеря аппетита, рвота, повышенная чувствительность к холоду и боли, высокая восприимчивость к инфекциям, повышенный диурез (до 10 л мочи за сутки), жажда, снижение работоспособности.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-13

Нервная регуляция осуществляется головным и спинным мозгом через нервы, которыми снабжены все органы нашего тела. На организм постоянно воздействуют те или иные раздражения. На все эти раздражения организм отвечает определенной деятельностью или, как принято говорить, происходит приспособление функции организма к постоянно меняющимся условиям внешней среды. Так, понижение температуры воздуха сопровождается не только сужением кровеносных сосудов, но и усилением обмена веществ в клетках и тканях и, следовательно, повышением теплообразования.

Благодаря этому устанавливайся определенное равновесие между теплоотдачей и теплообразованием, не происходит переохлаждение организма, сохраняется постоянство температуры тела. Раздражение пищей вкусовых рецепторов рта вызывает отделение слюны и других пищеварительных соков, под воздействием которых происходит переваривание пищи. Благодаря этому в клетки и ткани поступают необходимые вещества, и устанавливается определенное равновесие между диссимиляцией и ассимиляцией. По такому принципу происходит регуляция и других функции организма.

Нервная регуляция носит рефлекторный характер. Раздражения воспринимаются рецепторами. Возникающее возбуждение из рецепторов по афферентным (чувствительным) нервам передается в центральную нервную систему, а оттуда по эфферентным (двигательным) нервам - в органы, которые осуществляют определенную деятельность. Такие ответные реакции организма на раздражения, осуществляемые через центральную нервную систему, называют рефлексами. Путь же, по которому возбуждение передается при рефлексе, носит название рефлекторной дуги.

Рефлексы имеют разнообразный характер. И.П. Павлов разделил все рефлексы на безусловные и условные. Безусловные рефлексы - это рефлексы врожденные, передающиеся по наследству. Примером таких рефлексов являются сосудодвигательные рефлексы (сужение или расширение сосудов в ответ на раздражение кожи холодом или теплом), рефлекс слюноотделения (выделение слюны при раздражении вкусовых сосочков пищей) и многие другие.

Гуморальная регуляция (Humor - жидкость) осуществляется через кровь и другие составляющие внутреннюю среду организма различные химические вещества. Примерами таких веществ являются гормоны, выделяемые железами внутренней секреции, и витамины, поступающие в организм с пищей. Химические вещества разносятся кровью по всему организму и оказывают воздействие на различные функции, в частности на обмен веществ в клетках и тканях. При этом каждое вещество влияет на определенный процесс, происходящий в том или ином органе.

Например, в предстартовом состоянии, когда ожидается интенсивная физическая нагрузка, железы внутренней секреции (надпочечники) выделяют в кровь специальный гормон-адреналин, который способствует усилению деятельности сердечно-сосудистой системы.

Нервная система осуществляет регуляцию деятельности организма посредством биоэлектрических импульсов. Основными нервными процессами являются возбуждение и торможение, возникающие в нервных клетках. Возбуждение - деятельное состояние нервных клеток, когда они передают или направляют сами нервные импульсы другим клеткам: нервным, мышечным, железистым и другим. Торможение - состояние нервных клеток, когда их активность направлена на восстановление. Сон, например, является состоянием нервной системы, когда подавляющее число нервных клеток ЦНС заторможено.

Нервный и гуморальный механизмы регуляции функций взаимосвязаны. Так, нервная система оказывает регулирующее влияние на органы не только непосредственно через нервы, но также и через железы внутренней секреции, изменяя интенсивность образования гормонов в этих органах и поступление их в кровь. В свою очередь многие гормоны и другие вещества влияют на нервную систему.

Взаимосогласованность нервной и гуморальной реакции обеспечивается центральной нервной системой.

В живом организме нервная и гуморальная регуляция различных функций осуществляется по принципу саморегуляции, т.е. автоматически. По этому принципу регуляции поддерживается на определенном уровне кровяное давление, постоянство состава и физико-химических свойств крови, лимфы и тканевой жидкости, температуры тела, в строго согласованном порядке изменяется обмен веществ, деятельность сердца, дыхательной и других систем и органов.

Благодаря этому поддерживаются определенные сравнительно постоянные условия, в которых протекает деятельность клеток и тканей организма, или другими словами, сохраняется постоянство внутренней среды.

Таким образом, организм человека - это единая, целостная, саморегулирующаяся и саморазвивающаяся биологическая система, обладающая определенными резервными возможностями. При этом нужно знать, что способность к выполнению физической и умственной работы может возрастать многократно, фактически не имея ограничений в своем развитии.

Первая древнейшая форма взаимодействия между клетками многоклеточных организмов - это химическое взаимодействие посредством продуктов обмена веществ, поступающих в жидкости организма. Такими продуктами , или метаболитами, служат продукты распада белков, углекислота и др. Это гуморальная передача влияний, гуморальный механизм корреляции или связи между органами.

Гуморальная связь характеризуется следующими особенностями. Во-первых, отсутствием точного адреса, по которому направляется химическое вещество, поступающее в или другие жидкости тела. Химическое вещество может, следовательно, действовать на все органы и . Его действие не локализовано, не ограничено определенным местом. Во-вторых, химическое вещество распространяется относительно медленно. И, наконец, в-третьих, оно действует в ничтожных количествах и обычно быстро разрушается или выводится из организма. Гуморальные связи являются общими и для мира животных и мира растений.

Нервная и гуморальная регуляция

На следующем этапе развития живых существ появляются специальные органы - железы, в которых вырабатываются гуморально действующие вещества - гормоны, образующиеся из поступающих в организм пищевых веществ. Так, например, гормон адреналин образуется в надпочечниках из аминокислоты - тирозина. Это гормональная регуляция.

Основная функция нервной системы заключается в регуляции взаимодействия организма как единого целого с окружающей его внешней средой и в регуляции деятельности отдельных органов и связи между органами.

Нервная система усиливает или тормозит деятельность всех органов не только волнами возбуждения или нервными импульсами, но и посредством поступления в кровь, лимфу, спинномозговую и тканевую жидкости медиаторов, гормонов и метаболитов, или продуктов обмена веществ. Эти химические вещества действуют на органы и на нервную систему. Таким образом, в естественных условиях не существует исключительно нервная регуляция деятельности органов, а нервно-гуморальная.

Возбуждение нервной системы имеет биохимическую природу. По ней волнообразно распространяется сдвиг обмена веществ, при котором ионы избирательно проходят через мембраны, в результате чего образуется разность потенциалов между участками, находящимися в состоянии относительного покоя и возбужденными, и возникают . Эти токи, называются биотоками , или биопотенциалами , распространяются по нервной системе и вызывают возбуждение в последующих ее участках.

организма

Регуляция функций клеток, тканей и органов, взаимосвязь между ними, т.е. целостность организма, и единство организма и внешней среды осуществляется нервной системой и гуморальным путем. Другими словами, имеем два механизма регуляции функций - нервная и гуморальная.

Нервная регуляция осуществляется нервной системой, головным и спинным мозгом через нервы, которыми снабжены все органы нашего тела. На организм постоянно воздействуют те или иные раздражения. На все эти раздражения организм отвечает определенной деятельностью или как принято творить, происходит приспособление функции организма к постоянно меняющимся условиям внешней среды. Так, понижение температуры воздуха сопровождается не только сужением кровеносных сосудов, но и усилением обмена веществ в клетках и тканях и следовательно, повышением теплообразования. Благодаря этому устанавливается определенное равновесие между теплоотдачей теплообразованием, не происходит переохлаждение организма, сохраняется постоянство температуры тела. Раздражение пищей вкусовых рецепторов полос га рта вызывает отделение слюны и других пищеварительных соков. под воздействием которых происходит переваривание пищи. Благодаря этому в клетки и ткани поступают необходимые вещества, и устанавливается определенное равновесие между диссимиляцией и ассимиляцией. По такому принципу происходит регуляция и других функции организма.

Нервная регуляция носит рефлекторный характер. Различные раздражения воспринимаются рецепторами. Возникающее возбуждение из рецепторов по чувствительным нервам передается в центральную нервную, систему, а оттуда по двигательным нервам - в органы, которые осуществляют определенную деятельность. Такие ответные реакции организма на раздражения, осуществляемые через центральную нервную систему. называютрефлексами. Путь же, по которому возбуждение передается при рефлексе, носит название рефлекторной дуги. Рефлексы имеют разнообразный характер. И.П. Павлов разделил все рефлексы на безусловные и условные. Безусловные рефлексы - это рефлексы врожденные, передающиеся по наследству. Примером таких рефлексов являются сосудодвигательные рефлексы (сужение или расширение сосудов в ответ на раздражение кожи холодом или теплом), рефлекс слюноотделения (выделение слюны при раздражении вкусовых сосочков пищей) и многие другие.

Условные рефлексы - рефлексы приобретенные, они вырабатываются на протяжении жизни животного или человека. Эти рефлексы возникают

только при определенных условиях и могут исчезать. Примером условных рефлексов является отделение слюны при виде нищи, при ощущении запахов пищи, а у человека даже при разговоре о ней.



Гуморальная регуляция (Humor - жидкость) осуществляется через кровь и другие жидкое и, составляющие внутреннюю среду организма, различными химическими веществами, которые вырабатываются в самом организме или поступают из внешней среды. Примерами таких веществ являются гормоны, выделяемые железами внутренней секреции, и витамины, поступающие в организм с пищей. Химические вещества разносятся кровью но всему организму и оказывают воздействие на различные функции, в частности на обмен веществ в клетках и тканях. При этом каждое вещество влияет на определенный процесс, происходящий и том или ином органе.

Нервный и гуморальный механизмы регуляции функций взаимосвязаны. Так, нервная система оказывает регулирующее влияние на органы не только непосредственно через нервы, но также и через железы внутренней секреции, изменяя интенсивность образования гормонов в этих Органах и поступление их в кровь.

В свою очередь многие гормоны и другие вещества влияют на нервную систему.

В живом организме нервная и гуморальная регуляция различных функций осуществляется по принципу саморегуляции, т.е. автоматически. По этому принципу регуляции поддерживается па определенном уровне кровяное давление, постоянство состава и физико-химических свойств крови, температура тела. в строго согласованном порядке изменяется обмен веществ, деятельность сердца, дыхательной и других систем органов во время физической работы и т.д.

Благодаря этому поддерживаются определенные сравнительно постоянные условия, в которых протекает деятельность клеток и тканей организма или другими словами, сохраняется постоянство внутренней среды.

Следует отметить, что у человека ведущую роль в регуляции жизнедеятельности организма играет нервная система.

Таким образом, организм человека это единая, целостная, сложно устроенная, саморегулирующаяся и саморазвивающаяся биологическая система, обладающая определенными резервными возможностями. При этом

знать, что способность к выполнению физической работы может возрастать многократно, но до определенного придела. Тогда как умственная деятельность фактически не имеет ограничений в своем развитии.

Систематическая мышечная деятельность позволяет путем совершенствования физиологических функций мобилизовать резервы организма, о существовании которых многие даже не догадываются. Следует отметить существование обратного процесса падение функциональных возможностей организма и ускоренное старение при снижении физической активности.

В ходе физических упражнений совершенствуется высшая нервная деятельность, функции центральной нервной системы. нервно-мышечной. сердечно-сосудистой, дыхательной, выделительной и других систем, обмен веществ и энергии, а также система их нейрогуморального регулирования.

Человеческий организм, используя свойства саморегулирования внутренних процессов под внешним воздействием, реализует важнейшее свойство - адаптацию к изменяющимся внешним условиям, что является определяющим фактором в способности развития физических качеств и двигательных навыков в процессе тренировок.

Рассмотрим более подробно характер физиологических изменении в процессе тренировок.

Физическая нагрузка приводит к многообразным изменениям обмена веществ, характер которых зависит от длительности, мощности работы и количества участвующих мышц. При физической нагрузке преобладают катаболические процессы, мобилизация и использование энергетических субстратов, происходит накопление промежуточных продуктов обмена. Период отдыха характеризуется преобладанием анаболических процессов, накоплением резерва питательных веществ, усиленным синтезом белков.

Скорость восстановления находится в зависимости от величины возникающих во время работы изменении, то есть от величины нагрузки.

В период отдыха ликвидируются возникшие во время мышечной деятельности изменения обмена веществ. Если при физической нагрузке преобладают катаболические процессы, мобилизация и использование энергетических субстратов, происходит накопление промежуточных продуктов обмена, то период отдыха характеризуются преобладанием анаболических процессов, накоплением резерва питательных веществ, усиленным синтезом белков.

В после рабочий период возрастает интенсивность аэробного окисления, повышено потребление кислорода, т.е. ликвидируется кислородный долг. Субстратом окисления служат промежуточные продукты обмена, образовавшиеся в процессе мышечной деятельности, молочная кислота, кетоновые тела, кетокислоты. Запасы углеводов при физической работе, как правило, существенно снижаются, поэтому основным субстратом окисления становятся жирные кислоты. Благодаря усиленному использованию липидов в восстановительный период снижается дыхательный коэффициент.

Восстановительный период характеризуется усиленным биосинтезом белков, который угнетается во время физической работы, увеличивается также образование и выведение из организма конечных продуктов белкового обмена (мочевина и др.).

Скорость восстановления находится в зависимости от величины возникающих во время работы изменений, т.е. от величины нагрузки, что схематически представлено на рис. 1

Рис.1 Схема процессов расходования и восстановления источников

энергии при мышечной деятельности ратной интенсивности

Восстановление изменений, возникающих под влиянием нагрузок малой и средней интенсивности, идет медленнее, чем после нагрузок повышенной и предельной интенсивности, что объясняется более глубокими изменениями в период работы. После повышенных по интенсивности нагрузок наблюдаемый показатель обмена, веществ не только достигает исходного уровня, но и превышает его. Такое повышение выше исходного уровня получило название сверхвосстановления (суперкомпенсации) . Оно регистрируется только тогда, когда нагрузка, превышает по величине определенный уровень, т.е. тогда, когда возникающие изменения обмена оказывают влияние на генетический аппарат клетки. Выраженность сверхвостановления и его длительность находятся в прямой зависимости от интенсивности нагрузки.

Явление сверхвоееттиювления является важным: механизмом приспособления (органа) к изменившимся условиям функционирования и имеет важное значение для понимания биохимических основ спортивной тренировки. Следует отметить, что как общебиологическая закономерность, распространяется не только на накопление энергетического материала, но и на синтез белков, что, в частности, проявляется в виде рабочей гипертрофии скелетных мышц, сердечной мышщы. После интенсивной нагрузки усиливается синтез ряда ферментов (индукция ферментов) возрастает концентрация креатинфосфата, миоглобина, происходит ряд других изменений.

Установлено, что активная мышечная деятельность вызывает уси­ление деятельности сердечно-сосудистой, дыхательной и других систем организма. При любой деятельности человека все органы и системы ор­ганизма действуют согласованно, в тесном единстве. Эта взаимосвязь осуществляется с помощью нервной системы и гуморальной (жидкостной) регуляции.

Нервная система осуществляет регуляцию деятельности организма посредством биоэлектрических импульсов. Основными нервными процес­сами являются возбуждение и торможение, возникающие в нервных клет­ках. Возбуждение - деятельное состояние нервных клеток, когда они пе­редают ил» направляют сами нервные импульсы другим клеткам: нерв­ным, мышечным, железистым и другим. Торможение - состояние нервных клеток, когда их активность направлена на восстановление., Сон, напри­мер, является состоянием нервной системы, когда подавляющее число нервных клеток ЦНС заторможено.

Гуморальная регуляция производится через кровь посредством особых химических веществ (гормонов), выделяемых железами внутрен­ней секреции, соотношением концентрации СО2 и О2 с помощью других механизмов. Например, в предстартовом состоянии, когда ожидается ин­тенсивная физическая нагрузка, железы внутренней секреции (надпочеч­ники) выделяют в кровь специальный гормон-адреналин, который спо­собствует усилению деятельности сердечно-сосудистой системы.

Гуморальная и нервная регуляция осуществляются в единстве. Главенствующая роль отводится ЦНС, головному мозгу, являющемуся как бы центральным штабом управления жизнедеятельностью организма.

2.10.1. Рефлекторная природа и рефлекторные механизмы дви­гательной деятельности

Нервная система действует по принципу рефлекса. Унаследован­ные рефлексы, от рождения заложенные в нервной системе, в ее структуре, в связях между нервными клетками, называют безусловными рефлексами. Объединяясь в длинные цепи, безусловные рефлексы являются основой инстинктивного поведения. У человека и у высших животных в основу поведения заложены условные рефлексы, вырабатываемые в процессе жизнедеятельности на основе безусловных рефлексов.

Спортивная и трудовая деятельность человека, в том числе и овла­дение двигательными навыками, осуществляется по принципу взаимосвязи условных рефлексов и динамических стереотипов с безусловными рефлек­сами.

Для выполнения четких целенаправленных движений необходимо непрерывное поступление в ЦНС сигналов о функциональном состоянии мышц, о степени их сокращения, напряжения и расслабления, о позе тела, о положении суставов и угла сгиба в них.

Вся эта информация передается от рецепторов сенсорных систем и особенно от рецепторов двигательной сенсорной системы, от так назы­ваемых проприорецепторов, которые расположены в мышечной ткани, фасциях, суставных сумках и сухожилиях.

От этих рецепторов по принципу обратной связи и по механизму рефлекса в ЦНС поступает полная информация о выполнении данного дви­гательного действия и о сравнении ее с заданной программой.

Каждое, даже самое простое движение нуждается в постоянной коррекции, которая и обеспечивается информацией, поступающей от проприорецепторов и от других сенсорных систем. При многократном повто­рении двигательного действия импульсы от рецепторов достигают двига­тельных центров в ЦНС, которые соответствующим образом меняют свою импульсацию, идущую к мышцам, с целью совершенствования разучивае­мого движения.

Благодаря такому сложному рефлекторному механизму происхо­дит совершенствование двигательной деятельности.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

РЕГУЛЯЦИЯ – от лат. Regulo – направляю, упорядочиваю) координирующее влияние на клетки, ткани и органы, приводящее их деятельность в соответствие с потребностями организма и изменениями окружающей среды. Как происходит регуляция в организме?

3 слайд

Описание слайда:

4 слайд

Описание слайда:

Нервный и гуморальный способы регуляции функций тесно связаны между собой. На деятельность нервной системы постоянно оказывают влияние приносимые с током крови химические вещества, а образование большинства химических веществ и выделение их в кровь находится под постоянным контролем нервной системы. Регуляция физиологических функций в организме не может осуществляться с помощью только нервной или только гуморальной регуляции - это единый комплекс нейрогуморальной регуляции функций.

5 слайд

Описание слайда:

Нервная регуляция - это координирующее влияние нервной системы на клетки, ткани и органы, один из основных механизмов саморегуляции функций целостного организма. Нервная регуляция осуществляется с помощью нервных импульсов. Нервная регуляция является быстрой и локальной, что особенно важно при регуляции движений, и затрагивает все(!) системы организма.

6 слайд

Описание слайда:

В основе нервной регуляции лежит рефлекторный принцип. Рефлекс является универсальной формой взаимодействия организма с окружающей средой, это ответная реакция организма на раздражение, которая осуществляется через центральную нервную систему и контролируется ею.

7 слайд

Описание слайда:

Структурно-функциональной основой рефлекса является рефлекторная дуга - последовательно соединенная цепочка нервных клеток, обеспечивающая осуществление ответа на раздражение. Все рефлексы осуществляются благодаря деятельности центральной нервной системы - головного и спинного мозга.

8 слайд

Описание слайда:

Гуморальная регуляция Гуморальная регуляция - это координация физиологических и биохимических процессов, осуществляемая через жидкие среды организма (кровь, лимфу, тканевую жидкость) с помощью биологически активных веществ (гормонов), выделяемых клетками, органами и тканями в процессе их жизнедеятельности.

9 слайд

Описание слайда:

Гуморальная регуляция возникла в процессе эволюции раньше, чем нервная. Она усложнялась в процессе эволюции, в результате чего возникла эндокринная система (железы внутренней секреции). Гуморальная регуляция подчинена нервной регуляции и составляет совместно с ней единую систему нейрогуморальной регуляции функций организма, которая играет важную роль в поддержании относительного постоянства состава и свойств внутренней среды организма (гомеостаза) и его приспособлении к меняющимся условиям существования.

10 слайд

Описание слайда:

Иммунная регуляция Иммунитет - это физиологическая функция, которая обеспечивает устойчивость организма к действию чужеродных антигенов. Иммунитет человека делает его невосприимчивым ко многим бактериям, вирусам, грибкам, глистам, простейшим, различным ядам животных, обеспечивает защиту организма от раковых клеток. Задачей иммунной системы является распознавать и разрушать все чужеродные структуры. Иммунная система является регулятором гомеостаза. Эта функция осуществляется за счет выработки аутоантител, которые, например, могут связывать избыток гормонов.

11 слайд

Описание слайда:

Иммунологическая реакция, с одной стороны, является неотъемлемой частью гуморальной, так как большинство физиологических и биохимических процессов осуществляется при непосредственном участии гуморальных посредников. Однако нередко иммунологическая реакция носит прицельный характер и тем самым напоминает нервную регуляцию. Интенсивность иммунного ответа, в свою очередь, регулируется нейрофильным способом. Работа иммунной системы корректируется мозгом и через эндокринную систему. Такая нервная и гуморальная регуляция осуществляется с помощью нейромедиаторов, нейропептидов и гормонов. Промедиаторы и нейропептиды достигают органов иммунной системы по аксонам нервов, а гормоны выделяются эндокринными железами неродственно в кровь и таким образом доставляются к органам иммунной системы. Фагоцит (клетка иммунитета), уничтожает бактериальные клетки